论文标题

标签噪声过渡矩阵的可识别性

Identifiability of Label Noise Transition Matrix

论文作者

Liu, Yang, Cheng, Hao, Zhang, Kun

论文摘要

噪声过渡矩阵在使用嘈杂标签的学习问题中起着核心作用。在许多其他原因中,许多现有解决方案都依赖于访问它。在没有地面真相标签的情况下识别和估算过渡矩阵是一项挑战且具有挑战性的任务。当标签噪声转变取决于每个实例时,识别与实例有关的噪声过渡矩阵的问题变得更加具有挑战性。尽管最近的工作提出了从实例依赖性嘈杂标签中学习的解决方案,但该领域仍缺乏对何时仍然可以识别该问题的统一理解。本文的目的是表征标签噪声过渡矩阵的可识别性。在Kruskal的可识别性结果的基础上,我们能够在实例级别识别通用情况的噪声过渡矩阵时表明需要多个嘈杂标签的必要性。我们进一步实例化了结果,以解释最先进的解决方案的成功,以及如何缓解多个嘈杂标签的需求的其他假设。我们的结果还表明,分离的特征对上述标识任务有帮助,我们提供了经验证据。

The noise transition matrix plays a central role in the problem of learning with noisy labels. Among many other reasons, a large number of existing solutions rely on access to it. Identifying and estimating the transition matrix without ground truth labels is a critical and challenging task. When label noise transition depends on each instance, the problem of identifying the instance-dependent noise transition matrix becomes substantially more challenging. Despite recent works proposing solutions for learning from instance-dependent noisy labels, the field lacks a unified understanding of when such a problem remains identifiable. The goal of this paper is to characterize the identifiability of the label noise transition matrix. Building on Kruskal's identifiability results, we are able to show the necessity of multiple noisy labels in identifying the noise transition matrix for the generic case at the instance level. We further instantiate the results to explain the successes of the state-of-the-art solutions and how additional assumptions alleviated the requirement of multiple noisy labels. Our result also reveals that disentangled features are helpful in the above identification task and we provide empirical evidence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源