论文标题
高管量子计算
Toponomic Quantum Computation
论文作者
论文摘要
全能量子计算利用与量子状态子空间的演变相关的非亚伯几何阶段来编码逻辑门。我们确定了一类特殊的子空间,为此,一系列旋转会导致拓扑性质的非亚伯式全能性,因此在任何$ so(3)$ - 扰动下它是不变的。利用类似主要的恒星代表来为子空间,我们提供了拓扑 - 单学(或托管)不和cnot大门的明确例子。
Holonomic quantum computation makes use of non-abelian geometric phases, associated to the evolution of a subspace of quantum states, to encode logical gates. We identify a special class of subspaces, for which a sequence of rotations results in a non-abelian holonomy of a topological nature, so that it is invariant under any $SO(3)$-perturbation. Making use of a Majorana-like stellar representation for subspaces, we give explicit examples of topological-holonomic (or toponomic) NOT and CNOT gates.