论文标题
有限关系代数
Finite Relation Algebras
论文作者
论文摘要
我们将表明,几乎所有非缔合关系代数都是对称和不可或缺的(从某种意义上说,标记和未定分定量结构的对称和积分趋向于1),并且使用fraïssé限制,我们将表明所有非相关关系的类别的类别和关系的类别均已定律和关系。结果,我们获得了这些结构数量的改进的渐近公式,并扩大了有关关系代数的一些已知概率结果。
We will show that almost all nonassociative relation algebras are symmetric and integral (in the sense that the fraction of both labelled and unlabelled structures that are symmetric and integral tends to 1), and using a Fraïssé limit, we will establish that the classes of all atom structures of nonassociative relation algebras and relation algebras both have 0-1 laws. As a consequence, we obtain improved asymptotic formulas for the numbers of these structures and broaden some known probabilistic results on relation algebras.