论文标题

HRBF融合:使用即时隐含的RGB-D数据准确的3D重建

HRBF-Fusion: Accurate 3D reconstruction from RGB-D data using on-the-fly implicits

论文作者

Xu, Yabin, Nan, Liangliang, Zhou, Laishui, Wang, Jun, Wang, Charlie C. L.

论文摘要

高保真3D对象或场景的重建是一个基本的研究问题。 RGB-D融合的最新进展证明了从消费者级RGB-D摄像机生产3D模型的潜力。但是,由于其表面表示的离散性质和有限的分辨率(例如,基于点或体素),现有方法遭受了重建中摄像机跟踪和失真中错误的积累,这导致了不令人满意的3D重建。在本文中,我们提出了一种使用HERMITE径向基础函数(HRBF)的直接隐含的方法,作为在现有RGB-D Fusion框架中进行摄像机跟踪的连续表面表示。此外,曲率估计和置信度评估是从固定的HRBF隐含的固有表面特性衍生而来的,该表面特性将其质量更高的数据融合致力于数据融合。我们认为,我们的连续但在线表面表示可以有效地减轻噪声的稳健性,并与离散表示相比,用固有的表面平滑度来限制重建。各种现实世界和合成数据集的实验结果表明,在跟踪鲁棒性和重建精度方面,我们的HRBF融合表现优于最先进的方法。

Reconstruction of high-fidelity 3D objects or scenes is a fundamental research problem. Recent advances in RGB-D fusion have demonstrated the potential of producing 3D models from consumer-level RGB-D cameras. However, due to the discrete nature and limited resolution of their surface representations (e.g., point- or voxel-based), existing approaches suffer from the accumulation of errors in camera tracking and distortion in the reconstruction, which leads to an unsatisfactory 3D reconstruction. In this paper, we present a method using on-the-fly implicits of Hermite Radial Basis Functions (HRBFs) as a continuous surface representation for camera tracking in an existing RGB-D fusion framework. Furthermore, curvature estimation and confidence evaluation are coherently derived from the inherent surface properties of the on-the-fly HRBF implicits, which devote to a data fusion with better quality. We argue that our continuous but on-the-fly surface representation can effectively mitigate the impact of noise with its robustness and constrain the reconstruction with inherent surface smoothness when being compared with discrete representations. Experimental results on various real-world and synthetic datasets demonstrate that our HRBF-fusion outperforms the state-of-the-art approaches in terms of tracking robustness and reconstruction accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源