论文标题

Facebook和SMS文本消息的不同负担不会阻碍基于语言的预测模型的概括

Different Affordances on Facebook and SMS Text Messaging Do Not Impede Generalization of Language-Based Predictive Models

论文作者

Liu, Tingting, Giorgi, Salvatore, Tao, Xiangyu, Guntuku, Sharath Chandra, Bellew, Douglas, Curtis, Brenda, Ungar, Lyle

论文摘要

基于自适应移动设备的健康干预措施经常使用在非移动设备数据(例如社交媒体文本)培训的机器学习模型,因为收集大型文本消息(SMS)数据的困难和高昂的费用。因此,了解这些平台之间模型的差异和概括对于适当的部署至关重要。我们使用了共享的120位用户的样本,研究了Facebook和短信之间的心理语言差异及其对室外模型性能的影响。我们发现,用户使用Facebook共享经验(例如休闲)和SMS,以实现任务和对话目的(例如计划确认),反映了负担能力的差异。为了检查这些差异的下游效果,我们使用了预先培训的基于Facebook的语言模型来估计Facebook和SMS的年龄,性别,抑郁,生活满意度以及压力。我们发现在8个模型中有6个模型中的估计值和自我报告之间没有显着差异。这些结果表明,使用预先训练的Facebook语言模型通过即时干预来实现更好的准确性。

Adaptive mobile device-based health interventions often use machine learning models trained on non-mobile device data, such as social media text, due to the difficulty and high expense of collecting large text message (SMS) data. Therefore, understanding the differences and generalization of models between these platforms is crucial for proper deployment. We examined the psycho-linguistic differences between Facebook and text messages, and their impact on out-of-domain model performance, using a sample of 120 users who shared both. We found that users use Facebook for sharing experiences (e.g., leisure) and SMS for task-oriented and conversational purposes (e.g., plan confirmations), reflecting the differences in the affordances. To examine the downstream effects of these differences, we used pre-trained Facebook-based language models to estimate age, gender, depression, life satisfaction, and stress on both Facebook and SMS. We found no significant differences in correlations between the estimates and self-reports across 6 of 8 models. These results suggest using pre-trained Facebook language models to achieve better accuracy with just-in-time interventions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源