论文标题
Banach $ \ star $ -Algebras上的连续双线性地图
Continuous bilinear maps on Banach $\star$-algebras
论文作者
论文摘要
让$ a $是Unital Banach $ \ star $ -Algebra,unity $ 1 $,$ x $是Banach空间,$ ϕ:A \ times a \ to x $是连续的双线性图。我们表征了$ ϕ $的结构,其中满足以下任何属性:$$ a,b \ in a,\,\,\,a b^\ star = z \,\,(a^\ star b = z)\ rightArolOw ϕ(a,b^\ star)=(a,b^\ star)= ϕ(z,1)\ s) $ a,b \在a,\,\,\中,a b^\ star = z \,\,(a^\ star b = z)\ rightarrow ϕ(a,b^\ star)= ϕ(1,z)\,\,\,(ϕ(ϕ(A^\ star,b)=(a^\ star,b)= ϕ(1,z)$ z questect
Let $A$ be a unital Banach $\star$-algebra with unity $1$, $X$ be a Banach space and $ϕ: A \times A \to X$ be a continuous bilinear map. We characterize the structure of $ϕ$ where it satisfies any of the following properties: $$a,b \in A, \,\,\, a b^\star = z \, \,(a^\star b=z)\Rightarrow ϕ( a , b^\star ) = ϕ( z, 1 ) \, \, (ϕ( a^\star , b) = ϕ( z, 1 ));$$ $$a,b \in A, \,\,\, a b^\star = z \, \, (a^\star b=z)\Rightarrow ϕ( a , b^\star ) = ϕ( 1, z ) \, \, (ϕ( a^\star , b) = ϕ( 1, z )),$$ where $z\in A$ is fixed.