论文标题

通用统计模拟器

Universal Statistical Simulator

论文作者

Carney, Mark, Varcoe, Ben

论文摘要

量子傅立叶变换是量子计算中的一个著名示例,它是一种有用算法的首次演示,其中量子计算机比古典计算机要快。但是,在对速度提高速度的解释时,必须以信念理解经典计算的计算复杂性。此外,解释还提出了警告,即当前的经典计算可能会得到改善。在本文中,我们为Galton板模拟器提供了一个量子计算机代码,该量子代码比使用示例可以直观地理解而无需了解计算复杂性的示例要快的速度。我们仅使用三种类型的量子门在量子计算机上进行直接实现,该量子门使用$ \ Mathcal {o}(n^2)$资源来计算$ 2^n $轨迹。此处呈现的电路还受益于以前的量子加尔顿板的深度较低,此外,我们表明它可以扩展到通用统计模拟器,该模拟器可以通过去除PEG和更改每个PEG的左右比例来实现。

The Quantum Fourier Transform is a famous example in quantum computing for being the first demonstration of a useful algorithm in which a quantum computer is exponentially faster than a classical computer. However when giving an explanation of the speed up, understanding computational complexity of a classical calculation has to be taken on faith. Moreover, the explanation also comes with the caveat that the current classical calculations might be improved. In this paper we present a quantum computer code for a Galton Board Simulator that is exponentially faster than a classical calculation using an example that can be intuitively understood without requiring an understanding of computational complexity. We demonstrate a straight forward implementation on a quantum computer, using only three types of quantum gate, which calculates $2^n$ trajectories using $\mathcal{O} (n^2)$ resources. The circuit presented here also benefits from having a lower depth than previous Quantum Galton Boards, and in addition, we show that it can be extended to a universal statistical simulator which is achieved by removing pegs and altering the left-right ratio for each peg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源