论文标题

QoS-SLA感知的自适应遗传算法,用于在车辆互联网中集成的边缘云计算中的多重重点卸载

QoS-SLA-Aware Adaptive Genetic Algorithm for Multi-Request Offloading in Integrated Edge-Cloud Computing in Internet of Vehicles

论文作者

Ismail, Leila, Materwala, Huned, Hassanein, Hossam S.

论文摘要

车辆临时网络的车辆互联网是一项新兴技术,实现了智能城市应用程序的开发,该应用程序着重于提高交通安全,交通效率和整体驾驶体验。这些应用程序在服务水平协议中详细介绍了严格的要求。 由于车辆的计算和存储功能有限,因此将应用程序请求卸载到集成的边缘云计算系统上。现有的卸载解决方案着重于在执行时间方面优化应用程序的服务质量(QOS),并尊重单个SLA约束。他们不考虑重叠的多要求处理的影响,也不考虑车辆的变化速度。本文提出了一种新颖的人工智能QoS-SLA-SLA-SLA-SLA-SLA-SLA-SLA-SLA-SLA-AGA),以优化应用程序在异质的边缘云计算系统中多用卸载的执行时间,从而将多种重新质量重叠的速度和动态速度和动态车辆的影响造成了影响。提出的遗传算法集成了自适应惩罚功能,以吸收有关延迟,处理时间,截止日期,CPU和内存要求的SLA约束。数值实验和分析将我们的QoS-SLA-AGA与随机卸载和基线遗传方法进行比较。结果表明,与随机卸载方法相比,QoS-SLA-AGA平均执行请求的平均速度要快1.22倍,而违反SLA的请求速度却少了59.9%。相比之下,基线基于遗传的方法将请求的性能提高了1.14倍,而SLA违规行为增加了19.8%。

The Internet of Vehicles over Vehicular Ad-hoc Networks is an emerging technology enabling the development of smart city applications focused on improving traffic safety, traffic efficiency, and the overall driving experience. These applications have stringent requirements detailed in Service Level Agreement. Since vehicles have limited computational and storage capabilities, applications requests are offloaded onto an integrated edge-cloud computing system. Existing offloading solutions focus on optimizing the application's Quality of Service (QoS) in terms of execution time, and respecting a single SLA constraint. They do not consider the impact of overlapped multi-requests processing nor the vehicle's varying speed. This paper proposes a novel Artificial Intelligence QoS-SLA-aware adaptive genetic algorithm (QoS-SLA-AGA) to optimize the application's execution time for multi-request offloading in a heterogeneous edge-cloud computing system, which considers the impact of processing multi-requests overlapping and dynamic vehicle speed. The proposed genetic algorithm integrates an adaptive penalty function to assimilate the SLA constraints regarding latency, processing time, deadline, CPU, and memory requirements. Numerical experiments and analysis compare our QoS-SLA-AGA to random offloading, and baseline genetic-based approaches. Results show QoS-SLA-AGA executes the requests 1.22 times faster on average compared to the random offloading approach and with 59.9% fewer SLA violations. In contrast, the baseline genetic-based approach increases the requests' performance by 1.14 times, with 19.8% more SLA violations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源