论文标题
有效学习隐藏状态LTI状态空间模型未知顺序
Efficient learning of hidden state LTI state space models of unknown order
论文作者
论文摘要
本文的目的是解决隐藏状态线性不变(LTI)状态空间系统的两个相关估计问题,当隐藏状态的维度未知时。也就是说,从单个轨迹的部分观察到,对系统的Markov参数的任何有限数量的估计以及对系统的最小实现的估计。对于这两个问题,我们以各种估计误差上限,$ \等级$恢复条件和样本复杂性估计的形式提供统计保证。 具体而言,我们首先表明,汉克尔惩罚的最低方估计器的低$ \级$解决方案满足了$ s_p $ -norms在[1,2]中的$ s_p $ -norms中,这比对简单最小平方的现有运算符norm norm body捕获了系统订单的效果。然后,我们基于Ho-Kalman算法的变体提供了估计过程的稳定性分析,该算法既改善了Markov参数的Hankel矩阵的依赖性和最小奇异值。最后,我们提出了一种最低限度认识的估计算法,该算法使用Hankel惩罚了最小平方估计器和基于Ho-Kalman的估计程序,并具有很高的可能性,即我们恢复了系统的正确顺序,并满足$ S_2 $ NORM的新快速率,并在对依赖性的依赖性降低dimerension和其他参数的依赖性依赖性和其他问题。
The aim of this paper is to address two related estimation problems arising in the setup of hidden state linear time invariant (LTI) state space systems when the dimension of the hidden state is unknown. Namely, the estimation of any finite number of the system's Markov parameters and the estimation of a minimal realization for the system, both from the partial observation of a single trajectory. For both problems, we provide statistical guarantees in the form of various estimation error upper bounds, $\rank$ recovery conditions, and sample complexity estimates. Specifically, we first show that the low $\rank$ solution of the Hankel penalized least square estimator satisfies an estimation error in $S_p$-norms for $p \in [1,2]$ that captures the effect of the system order better than the existing operator norm upper bound for the simple least square. We then provide a stability analysis for an estimation procedure based on a variant of the Ho-Kalman algorithm that improves both the dependence on the dimension and the least singular value of the Hankel matrix of the Markov parameters. Finally, we propose an estimation algorithm for the minimal realization that uses both the Hankel penalized least square estimator and the Ho-Kalman based estimation procedure and guarantees with high probability that we recover the correct order of the system and satisfies a new fast rate in the $S_2$-norm with a polynomial reduction in the dependence on the dimension and other parameters of the problem.