论文标题

牛顿类型的方法用于解决泽山川 - 玛巴等离子体模型

Newton Type Methods for solving a Hasegawa-Mima Plasma Model

论文作者

Moufawad, Sophie M., Nassif, Nabil R.

论文摘要

在[1]中,非线性时空长谷川 - MIMA等离子体方程式被配制为两个线性PDE的耦合系统,其解决方案是一对(U,W)。第一个方程是双曲线类型和椭圆类型的第二个。还得出了针对初始值的较弱的谷川毛ima问题,并得出了周期性边界条件的较弱的解决方案。在最新的工作[2]中,使用有限元空间域与Euler-Implicer时间方案组成的数值方法用于离散耦合的变异性黑泽 - MIMA模型。该隐式非线性方案的半线性版本已针对几种类型的初始条件进行了测试。这种半线性方案长期以来缺乏效率,因此需要对溶液的幅度施加盖帽。为了避免这种困难,在本文中,我们使用牛顿型方法(牛顿,和弦和引入的修改后的牛顿方法)来求解数值完全无限的非线性方案。在FreeFem ++中测试这些方法表示重大改进,因为长期不需要限制CAP。在续集中,我们通过证明几个结果,特别是实现方法的收敛性来证明这些方法的有效性。

In [1], the non-linear space-time Hasegawa-Mima plasma equation is formulated as a coupled system of two linear PDE's, a solution of which is a pair (u, w). The first equation is of hyperbolic type and the second of elliptic type. Variational frames for obtaining weak solutions to the initial value Hasegawa-Mima problem with periodic boundary conditions were also derived. In a more recent work [2], a numerical approach consisting of a finite element space-domain combined with an Euler-implicit time scheme was used to discretize the coupled variational Hasegawa-Mima model. A semi-linear version of this implicit nonlinear scheme was tested for several types of initial conditions. This semi-linear scheme proved to lack efficiency for long time, which necessitates imposing a cap on the magnitude of the solution. To circumvent this difficulty, in this paper, we use Newton-type methods (Newton, Chord and an introduced Modified Newton method) to solve numerically the fully-implicit non-linear scheme. Testing these methods in FreeFEM++ indicates significant improvements as no cap needs to be imposed for long time. In the sequel, we demonstrate the validity of these methods by proving several results, in particular the convergence of the implemented methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源