论文标题
动态网络中可靠的社区搜索
Reliable Community Search in Dynamic Networks
论文作者
论文摘要
搜索本地社区是一个重要的研究问题,它支持各种复杂网络(例如社交网络,协作网络,蜂窝网络等)中的高级数据分析。随着时间的推移,此类网络的演变促使最近的一些研究促使人们在动态网络中识别当地社区。但是,这些研究仅利用脱节结构信息的汇总来衡量质量并忽略社区在连续的时间间隔内的可靠性。为了填补这一研究差距,我们提出了一个新颖的$(θ,k)$ - $ core $可靠社区(CRC)在加权动态网络中的模型,并定义了\ textit {最可靠的社区搜索}的问题,该问题将连接强度,凝聚力连续性和最大成员参与的理想属性。为了解决此问题,我们首先开发了一种基于边缘过滤的新型在线CRC搜索算法,该算法可以在搜索\ textit {可靠{可靠}社区时有效地从网络中滤除琐碎的边缘信息。此外,我们提出了一个索引结构,加权核心森林索引(WCF索引),并设计了一种基于索引的动态编程CRC搜索算法,可以修剪大量微不足道的中间结果并支持有效的查询处理。最后,我们系统地进行了广泛的实验,以证明在各种实验环境下,在八个实际数据集上提出的算法的效率和有效性。
Searching for local communities is an important research problem that supports advanced data analysis in various complex networks, such as social networks, collaboration networks, cellular networks, etc. The evolution of such networks over time has motivated several recent studies to identify local communities in dynamic networks. However, these studies only utilize the aggregation of disjoint structural information to measure the quality and ignore the reliability of the communities in a continuous time interval. To fill this research gap, we propose a novel $(θ,k)$-$core$ reliable community (CRC) model in the weighted dynamic networks, and define the problem of \textit{most reliable community search} that couples the desirable properties of connection strength, cohesive structure continuity, and the maximal member engagement. To solve this problem, we first develop a novel edge filtering based online CRC search algorithm that can effectively filter out the trivial edge information from the networks while searching for a \textit{reliable} community. Further, we propose an index structure, Weighted Core Forest-Index (WCF-index), and devise an index-based dynamic programming CRC search algorithm, that can prune a large number of insignificant intermediate results and support efficient query processing. Finally, we conduct extensive experiments systematically to demonstrate the efficiency and effectiveness of our proposed algorithms on eight real datasets under various experimental settings.