论文标题

在黑客论坛(深网)中进行威胁检测的深度学习算法

Deep Learning Algorithm for Threat Detection in Hackers Forum (Deep Web)

论文作者

Adewopo, Victor, Gonen, Bilal, Elsayed, Nelly, Ozer, Murat, Elsayed, Zaghloul Saad

论文摘要

在我们当前的社会中,设备的连接性可让网民轻松访问使用网络空间技术进行非法活动。 Deep Web平台是一个由信任,信息共享,权衡和审核系统的界限所掩盖的完善的生态系统。域知识是在黑客论坛中共享的,其中包含妥协指标,可以探讨用于网络智能的智能。开发可以部署可以进行威胁检测的工具是在网络空间中确保数字通信的重要组成部分。在本文中,我们讨论了在深层网络论坛中使用TOR继电器节点在匿名通信中的使用。我们提出了一种使用深度学习算法长期记忆(LSTM)来检测网络威胁的新方法。开发的模型的表现优于其他研究人员在该问题域中的实验结果,精度为94 \%,精度为90 \%。我们的模型很容易由组织在网络攻击前确保数字通信和检测漏洞暴露的情况下很容易部署。

In our current society, the inter-connectivity of devices provides easy access for netizens to utilize cyberspace technology for illegal activities. The deep web platform is a consummative ecosystem shielded by boundaries of trust, information sharing, trade-off, and review systems. Domain knowledge is shared among experts in hacker's forums which contain indicators of compromise that can be explored for cyberthreat intelligence. Developing tools that can be deployed for threat detection is integral in securing digital communication in cyberspace. In this paper, we addressed the use of TOR relay nodes for anonymizing communications in deep web forums. We propose a novel approach for detecting cyberthreats using a deep learning algorithm Long Short-Term Memory (LSTM). The developed model outperformed the experimental results of other researchers in this problem domain with an accuracy of 94\% and precision of 90\%. Our model can be easily deployed by organizations in securing digital communications and detection of vulnerability exposure before cyberattack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源