论文标题

嘈杂的分类能力

Noisy Sorting Capacity

论文作者

Wang, Ziao, Ghaddar, Nadim, Zhu, Banghua, Wang, Lele

论文摘要

排序是使用成对比较订购$ n $元素的任务。众所周知,当观察到比较的结果没有噪声时,$ m =θ(n \ log n)$比较是必要和足够的。在本文中,当每个比较与某些固定但未知的概率$ p $不正确时,我们研究了排序问题。 Unlike the common approach in the literature which aims to minimize the number of pairwise comparisons $m$ to achieve a given desired error probability, we consider randomized algorithms with expected number of queries $\textsf{E}[M]$ and aim at characterizing the maximal sorting rate $\frac{n\log n}{\textsf{E}[M]}$ such that the ordering of这些元素可以渐近地估算出消失的误差概率。最大率称为嘈杂的分类能力。在这项工作中,我们在嘈杂的排序容量上得出了上限和下限。通过将插入排序算法与众所周知的burnashev- Zigangirov算法相结合,用于与反馈的通道编码,建立了两个用于固定长度算法的下限 - 一种用于固定长度算法和一种用于可变长度的算法。与现有方法相比,所提出的算法是普遍的,因为它们不需要$ p $的知识,同时保持严格的积极排序率。此外,我们在嘈杂的排序容量上得出了一般的上限,以及对最大速率上的上限,可以通过对基于插入排序的算法进行排序来实现。

Sorting is the task of ordering $n$ elements using pairwise comparisons. It is well known that $m=Θ(n\log n)$ comparisons are both necessary and sufficient when the outcomes of the comparisons are observed with no noise. In this paper, we study the sorting problem when each comparison is incorrect with some fixed yet unknown probability $p$. Unlike the common approach in the literature which aims to minimize the number of pairwise comparisons $m$ to achieve a given desired error probability, we consider randomized algorithms with expected number of queries $\textsf{E}[M]$ and aim at characterizing the maximal sorting rate $\frac{n\log n}{\textsf{E}[M]}$ such that the ordering of the elements can be estimated with a vanishing error probability asymptotically. The maximal rate is referred to as the noisy sorting capacity. In this work, we derive upper and lower bounds on the noisy sorting capacity. The two lower bounds -- one for fixed-length algorithms and one for variable-length algorithms -- are established by combining the insertion sort algorithm with the well-known Burnashev--Zigangirov algorithm for channel coding with feedback. Compared with existing methods, the proposed algorithms are universal in the sense that they do not require the knowledge of $p$, while maintaining a strictly positive sorting rate. Moreover, we derive a general upper bound on the noisy sorting capacity, along with an upper bound on the maximal rate that can be achieved by sorting algorithms that are based on insertion sort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源