论文标题

同时发生的猜想的注释

A note on the concurrent normal conjecture

论文作者

Grebennikov, A., Panina, G.

论文摘要

从\ mathbb {r}^n $中的任何凸面$ k \ in \ mathbb {r}^n $中的任何凸面上都有一个猜测,在$ k $的内部中存在一个点,这些点属于$ k $的边界的不同点,至少属于$ 2N $正常。猜想以$ n = 2,3,4 $而众所周知。在最近的Y. Martinez-Maure的预印象的激励下,我们简短地证明了他的结果:对于尺寸$ n \ geq 3 $,在轻度条件下,几乎每个正常都通过边界到平稳的凸面$ k \ in \ mathbb {r}^n $包含至少6美元的$ 6 $ $ k $ y MATHBB {r}^n $。

It is conjectured since long that for any convex body $K \in \mathbb{R}^n$ there exists a point in the interior of $K$ which belongs to at least $2n$ normals from different points on the boundary of $K$. The conjecture is known to be true for $n=2,3,4$. Motivated by a recent preprint of Y. Martinez-Maure, we give a short proof of his result: for dimension $n\geq 3$, under mild conditions, almost every normal through a boundary point to a smooth convex body $K\in \mathbb{R}^n$ contains an intersection point of at least $6$ normals from different points on the boundary of $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源