论文标题

在最小的较高属填充物上

On minimal higher genus fillings

论文作者

Chambers, Gregory R.

论文摘要

在本文中,我们证明,如果$(m,g)$是$ g $ g $定向的表面,则具有单个边界组件$ s^1 $,并且如果$(d,g_0)$是一张光盘,以至于内部点通过唯一的大地测量学和独特的地点连接 $$ d _ {(d,g_0)}(x,y)\ geq d _ {(m,g)}(x,y)$ $ \ textrm {aild}(d,g_0)。$$

In this article, we prove that if $(M,g)$ is a genus $G$ orientable surface with a single boundary component $S^1$, and if $(D,g_0)$ is a disc such that interior points are connected by unique geodesics and $$d_{(D,g_0)}(x,y) \geq d_{(M,g)}(x,y)$$ for all $x,y \in \partial M = \partial D$, then $$(1 + \frac{2 G}π) \textrm{Area}(M,g) \geq \textrm{Area}(D,g_0).$$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源