论文标题
Hyper-Kähler歧管上的原子对象
Atomic objects on hyper-Kähler manifolds
论文作者
论文摘要
我们介绍并研究了原子或骨在高维超kähler歧管上的概念,并表明它们在K3表面上具有许多简单的束带的有趣特性。例如,我们证明了用于稳定原子束的衍生内态的DG代数的形式。我们进一步通过研究原子拉格朗日亚曼群来证明原子对象的特征。在附录中,我们证明了Hyper-Kähler歧管上的球形对象的不存在结果。
We introduce and study the notion of atomic sheaves and complexes on higher-dimensional hyper-Kähler manifolds and show that they share many of the intriguing properties of simple sheaves on K3 surfaces. For example, we prove formality of the dg algebra of derived endomorphisms for stable atomic bundles. We further demonstrate the characteristics of atomic objects by studying atomic Lagrangian submanifolds. In the appendix, we prove non-existence results for spherical objects on hyper-Kähler manifolds.