论文标题

纵向数据的非线性分层模型

A Nonlinear Hierarchical Model for Longitudinal Data on Manifolds

论文作者

Hanik, Martin, Hege, Hans-Christian, von Tycowicz, Christoph

论文摘要

大型纵向研究提供了许多有价值的信息,尤其是在医疗应用中。为了利用其全部潜力,必须解决的问题是在不同时间进行的受试者内测量之间的相关性。对于欧几里得空间中的数据,可以使用分层模型来完成,即在两个不同阶段考虑对象内和受试者间可变性的模型。然而,医学研究的数据通常会在非线性歧管中占据价值。在第一步中,已经开发了大地层次模型,通过假设时间诱导的对象内变化沿歧管中的广义直线发生,从而概括了线性ansatz。但是,通常不是这种情况(例如,周期性运动或饱和的过程)。我们为流形值数据提出了一个层次模型,该模型将其扩展到沿高阶曲线的趋势,即歧管中的贝齐尔花键。为此,我们提出了一种根据基于功能的Riemannian度量来比较形状趋势的原则性方法。值得注意的是,该指标允许仅需要回归问题解决方案的各种时间离散化允许有效而简单的计算。我们从骨关节炎倡议中验证了模型,包括疾病进展的分类。

Large longitudinal studies provide lots of valuable information, especially in medical applications. A problem which must be taken care of in order to utilize their full potential is that of correlation between intra-subject measurements taken at different times. For data in Euclidean space this can be done with hierarchical models, that is, models that consider intra-subject and between-subject variability in two different stages. Nevertheless, data from medical studies often takes values in nonlinear manifolds. Here, as a first step, geodesic hierarchical models have been developed that generalize the linear ansatz by assuming that time-induced intra-subject variations occur along a generalized straight line in the manifold. However, this is often not the case (e.g., periodic motion or processes with saturation). We propose a hierarchical model for manifold-valued data that extends this to include trends along higher-order curves, namely Bézier splines in the manifold. To this end, we present a principled way of comparing shape trends in terms of a functional-based Riemannian metric. Remarkably, this metric allows efficient, yet simple computations by virtue of a variational time discretization requiring only the solution of regression problems. We validate our model on longitudinal data from the osteoarthritis initiative, including classification of disease progression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源