论文标题
季节曲线的绕组数和同型
Winding number and homotopy for quaternionic curves
论文作者
论文摘要
遵循最新的Quaternionic曲线方法,我们定义了Quaternionic极角,这使我们能够定义Quaternionic曲线的全局特性,即绕组数和同型概念。结果承认了各种应用,包括对平面曲线的进一步类比和物理应用。
Following a recent approach to quaternionic curves, we defined the quaternionic polar angle that enabled us to define global properties of quaternionic curves, namely the winding number and the homotopy concept. The results admit various applications, including further analogies to plane curves, and physical applications.