论文标题
具有基于RRAM的阈值检测的绝热电容性人工神经元用于节能神经形态计算
An Adiabatic Capacitive Artificial Neuron with RRAM-based Threshold Detection for Energy-Efficient Neuromorphic Computing
论文作者
论文摘要
为了寻求低功率,以生物启发的计算均基于回忆性和基于成年的人工神经网络(ANN),一直是越来越多的主题,即越来越重点,用于硬件实施神经形态计算。再进一步,呼吁使用绝热计算的再生电容性神经网络为降低能源消耗提供了诱人的途径,尤其是当与“ Memimpedace”元素结合使用时。在这里,我们提出了一种人工神经元,具有绝热的突触电容器,可为神经元的somas产生膜电位。后者通过动态闩锁比较器实现,并使用电阻随机访问存储器(RRAM)设备增强。我们最初的4位绝热电容性神经元概念验证示例显示了90%的突触能量节省。在4个突触/SOMA时,我们已经看到总体降低35%的能量。此外,工艺和温度对4位绝热突触的影响显示,在100摄氏度的范围内,最大的能量变化为30%,而不会损失任何功能。最后,我们对ANN的绝热方法的功效进行了512和1024突触/神经元的测试,最差的和最佳的案例突触载荷条件以及可变的均衡电容量化了均衡电容的预期权衡和最佳功率 - 锁定频率的范围与载荷的范围(即主动造型的百分比)。
In the quest for low power, bio-inspired computation both memristive and memcapacitive-based Artificial Neural Networks (ANN) have been the subjects of increasing focus for hardware implementation of neuromorphic computing. One step further, regenerative capacitive neural networks, which call for the use of adiabatic computing, offer a tantalising route towards even lower energy consumption, especially when combined with `memimpedace' elements. Here, we present an artificial neuron featuring adiabatic synapse capacitors to produce membrane potentials for the somas of neurons; the latter implemented via dynamic latched comparators augmented with Resistive Random-Access Memory (RRAM) devices. Our initial 4-bit adiabatic capacitive neuron proof-of-concept example shows 90% synaptic energy saving. At 4 synapses/soma we already witness an overall 35% energy reduction. Furthermore, the impact of process and temperature on the 4-bit adiabatic synapse shows a maximum energy variation of 30% at 100 degree Celsius across the corners without any functionality loss. Finally, the efficacy of our adiabatic approach to ANN is tested for 512 & 1024 synapse/neuron for worst and best case synapse loading conditions and variable equalising capacitance's quantifying the expected trade-off between equalisation capacitance and range of optimal power-clock frequencies vs. loading (i.e. the percentage of active synapses).