论文标题
概率上健壮的学习:平衡平均和最差的表现
Probabilistically Robust Learning: Balancing Average- and Worst-case Performance
论文作者
论文摘要
机器学习的许多成功都是基于最大程度地减少平均损失函数的基础。但是,众所周知,这种范式遭受了鲁棒性问题的影响,阻碍了其在安全 - 关键领域中的适用性。这些问题通常是通过针对数据扰动的培训来解决的,该技术被称为对抗性培训。尽管经验上有效,但对抗性训练可能过于保守,从而导致名义绩效和稳健性之间的权衡不佳。为此,在本文中,我们提出了一个称为概率鲁棒性的框架,该框架弥合了准确但脆弱的平均情况和强大但保守的最坏情况之间的差距,这是通过对大多数而不是对所有扰动的稳健性。从理论的角度来看,该框架克服了表现与最差案例学习和平均案例学习的样本复杂性之间的权衡。从实际的角度来看,我们提出了一种基于风险感知优化的新算法,该算法有效地平衡了平均和最差的案例性能,而相对于对抗性训练,计算成本较低。我们对MNIST,CIFAR-10和SVHN的结果说明了该框架在从平均值到最差的鲁棒性的频谱上的优势。
Many of the successes of machine learning are based on minimizing an averaged loss function. However, it is well-known that this paradigm suffers from robustness issues that hinder its applicability in safety-critical domains. These issues are often addressed by training against worst-case perturbations of data, a technique known as adversarial training. Although empirically effective, adversarial training can be overly conservative, leading to unfavorable trade-offs between nominal performance and robustness. To this end, in this paper we propose a framework called probabilistic robustness that bridges the gap between the accurate, yet brittle average case and the robust, yet conservative worst case by enforcing robustness to most rather than to all perturbations. From a theoretical point of view, this framework overcomes the trade-offs between the performance and the sample-complexity of worst-case and average-case learning. From a practical point of view, we propose a novel algorithm based on risk-aware optimization that effectively balances average- and worst-case performance at a considerably lower computational cost relative to adversarial training. Our results on MNIST, CIFAR-10, and SVHN illustrate the advantages of this framework on the spectrum from average- to worst-case robustness.