论文标题
集群编辑的新时间解释
A New Temporal Interpretation of Cluster Editing
论文作者
论文摘要
NP完整的图形问题集群编辑旨在通过使边缘最少的编辑来将静态图转换为差异的分离。我们在时间图中介绍了对此问题的自然解释,其边缘集随时间变化而变化。即使仅限于基础图是一条路径的时间表,这个问题也是NP完整的,但是我们获得了两种用于限制情况的多项式时间算法。在静态设置中,众所周知,只有且仅包含$ p_3 $的诱导副本时,图是一个差异的不相交;我们证明,在时间设置中,没有涉及最多四个顶点集的一般表征,而是在最多五个顶点上获得涉及禁止配置的完整表征。该表征会导致FPT算法通过允许的修改数量和时间表的寿命同时进行了参数化。
The NP-complete graph problem Cluster Editing seeks to transform a static graph into a disjoint union of cliques by making the fewest possible edits to the edges. We introduce a natural interpretation of this problem in temporal graphs, whose edge sets change over time. This problem is NP-complete even when restricted to temporal graphs whose underlying graph is a path, but we obtain two polynomial-time algorithms for restricted cases. In the static setting, it is well-known that a graph is a disjoint union of cliques if and only if it contains no induced copy of $P_3$; we demonstrate that no general characterisation involving sets of at most four vertices can exist in the temporal setting, but obtain a complete characterisation involving forbidden configurations on at most five vertices. This characterisation gives rise to an FPT algorithm parameterised simultaneously by the permitted number of modifications and the lifetime of the temporal graph.