论文标题

后温度优化医学成像中的反问题的贝叶斯模型

Posterior temperature optimized Bayesian models for inverse problems in medical imaging

论文作者

Laves, Max-Heinrich, Tölle, Malte, Schlaefer, Alexander, Engelhardt, Sandy

论文摘要

我们提出了后温度优化的贝叶斯逆模型(Potobim),这是一种使用平均场差异推理和完全恢复的后验,一种无监督的贝叶斯方法在医学成像中的逆问题。贝叶斯方法具有接近逆任务的有用属性,例如层析成像重建或图像降解。合适的先验分布引入了正则化,这是解决问题不足并减少数据过度拟合所需的。然而,实际上,这通常会导致次优的后温度,而贝叶斯方法的全部潜力并未被利用。在Potobim中,我们使用Gaussian过程回归的贝叶斯优化优化了先前分布的参数和后温度的参数。我们的方法对各种模式的四个不同的逆任务进行了广泛的评估,其中包括来自公共数据集中的图像,我们证明,优化的后温度在没有温度优化的情况下优于非乘式和贝叶斯的方法。使用优化的先前分布和后温度可提高准确性和不确定性估计,我们表明每个任务域都可以找到这些超参数。脾气暴躁的后遗迹产生了校准的不确定性,从而提高了预测的可靠性。我们的源代码可在github.com/cardio-ai/mfvi-dip-mia上公开获得。

We present Posterior Temperature Optimized Bayesian Inverse Models (POTOBIM), an unsupervised Bayesian approach to inverse problems in medical imaging using mean-field variational inference with a fully tempered posterior. Bayesian methods exhibit useful properties for approaching inverse tasks, such as tomographic reconstruction or image denoising. A suitable prior distribution introduces regularization, which is needed to solve the ill-posed problem and reduces overfitting the data. In practice, however, this often results in a suboptimal posterior temperature, and the full potential of the Bayesian approach is not being exploited. In POTOBIM, we optimize both the parameters of the prior distribution and the posterior temperature with respect to reconstruction accuracy using Bayesian optimization with Gaussian process regression. Our method is extensively evaluated on four different inverse tasks on a variety of modalities with images from public data sets and we demonstrate that an optimized posterior temperature outperforms both non-Bayesian and Bayesian approaches without temperature optimization. The use of an optimized prior distribution and posterior temperature leads to improved accuracy and uncertainty estimation and we show that it is sufficient to find these hyperparameters per task domain. Well-tempered posteriors yield calibrated uncertainty, which increases the reliability in the predictions. Our source code is publicly available at github.com/Cardio-AI/mfvi-dip-mia.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源