论文标题
抑制功率校正显示红外取消的新功能
Power suppressed corrections show new features of infrared cancellations
论文作者
论文摘要
红外线(IR)差异的取消是量子场理论中的一个古老话题,其主要结果被凝结成著名的Kinoshita-Lee-Nauenberg(KLN)定理。在本文中,我们考虑了在自发损坏的仪表理论的背景下对主要(即双重含量)IR差异的批量校正的校正。我们基于自发损坏的$ u'(1)\ otimes u(1)$ gauge组在简化的理论设置中工作。我们以一环的水平分析了质量抑制的术语,对假设的重型$ z'$量表玻色子的衰减通道的双层校正,与轻性手性费米子耦合,并与轻质的$ z $ aguge boson混合。仅限于这个理论框架,只有最终状态校正是相关的。我们发现,对KLN定理的完全剥削需要各种衰减通道的非平凡组合,以摆脱质量抑制的IR校正。基于这一观察,我们表明,从沉重的$ z'$量规玻色子的任何两体衰减开始,取消大规模抑制的双重态度校正需要在整个衰减宽度上获得总和,从而实现最终状态的包含,而最终状态是NA \“ \”函数的计算,我们将一项算法的计算。 IR来源的双重载体与通过添加$ Z'$扩大标准模型的模型有关。
The cancellation of infrared (IR) divergences is an old topic in quantum field theory whose main results are condensed into the celebrated Kinoshita-Lee-Nauenberg (KLN) theorem. In this paper, we consider mass-suppressed corrections to the leading (i.e. double-logarithmic) IR divergences in the context of spontaneously broken gauge theories. We work in a simplified theoretical set-up based on the spontaneously broken $U'(1)\otimes U(1)$ gauge group. We analyze, at the one-loop level and including mass-suppressed terms, the double-logarithmic corrections to the decay channels of a hypothetical heavy $Z'$ gauge boson coupled to light chiral fermions and mixed with a light massive $Z$ gauge boson. Limited to this theoretical framework, only final state IR corrections are relevant. We find that full exploitation of the KLN theorem requires non-trivial combinations of various decay channels in order to get rid of the mass-suppressed IR corrections. Based on this observation we show that, starting from any two-body decay of the heavy $Z'$ gauge boson, the cancellation of the mass-suppressed double-logarithmic corrections requires the sum over the full decay width (thus enforcing the inclusion of final states which are na\"ıvely unrelated to the starting one). En route, we prove a number of technical results that are relevant for the computation of mass-suppressed double-logarithms of IR origin. Our results are relevant for models that enlarge the Standard Model by adding a heavy $Z'$.