论文标题
不变的祖先搜索
Invariant Ancestry Search
论文作者
论文摘要
最近,已经提出了利用预测模型在不断变化的环境方面的不变性来推断响应变量的因果父母的子集的不变性。如果环境仅影响少数基本机制,则例如不变因果预测(ICP)确定的子集可能很小,甚至是空的。我们介绍了最小不变性的概念,并提出了不变的血统搜索(IAS)。在其人群版本中,IAS输出了一个仅包含响应祖先的集合,并且是ICP输出的超集。当应用于数据时,如果不变性的基础测试具有渐近水平和功率,则相应的保证会渐近。我们开发可扩展算法并在模拟和真实数据上执行实验。
Recently, methods have been proposed that exploit the invariance of prediction models with respect to changing environments to infer subsets of the causal parents of a response variable. If the environments influence only few of the underlying mechanisms, the subset identified by invariant causal prediction (ICP), for example, may be small, or even empty. We introduce the concept of minimal invariance and propose invariant ancestry search (IAS). In its population version, IAS outputs a set which contains only ancestors of the response and is a superset of the output of ICP. When applied to data, corresponding guarantees hold asymptotically if the underlying test for invariance has asymptotic level and power. We develop scalable algorithms and perform experiments on simulated and real data.