论文标题

不同高度的基础矩阵

Base matrices of various heights

论文作者

Brendle, Joerg

论文摘要

Balcar,Pelant和Simon的经典定理说,有一个高度H的基本矩阵,其中H是P(Omega)/Fin的分布数。我们表明,如果连续c是规则的,则具有高度C的基本矩阵,并且在Cohen和随机模型中,有任何常规无数高度或等于C的基本矩阵。这回答了Fischer,Koelbing和Wohofsky的问题。

A classical theorem of Balcar, Pelant, and Simon says that there is a base matrix of height h, where h is the distributivity number of P(omega)/fin. We show that if the continuum c is regular, then there is a base matrix of height c, and that there are base matrices of any regular uncountable height less or equal than c in the Cohen and random models. This answers questions of Fischer, Koelbing, and Wohofsky.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源