论文标题

KSD汇总的合适性测试

KSD Aggregated Goodness-of-fit Test

论文作者

Schrab, Antonin, Guedj, Benjamin, Gretton, Arthur

论文摘要

我们研究了基于内核Stein差异(KSD)的合适性测试的特性。我们介绍了一种构建一个名为KSDAGG的测试的策略,该测试与不同的内核汇总了多个测试。 KSDAGG避免将数据分开以执行内核选择(这会导致测试能力损失),并最大程度地提高了核集合的测试能力。我们在KSDAGG的力量上提供了非反应保证:我们证明它达到了收集的最小均匀分离率,直到对数期限。对于具有有界模型得分函数的紧凑型密度,我们在受限的Sobolev球上得出了KSDAGG的速率;该速率对应于不受限制的Sobolev球的最小速率,直到迭代的对数项。可以在实践中准确计算KSDAGG,因为它依赖于参数bootstrap或野生引导程序来估计分位数和级别校正。特别是,对于固定核的带宽至关重要的选择,它避免了诉诸于任意启发式方法(例如中位数或标准偏差)或数据拆分。我们在合成数据和现实世界中发现KSDAGG的表现优于其他最先进的二次二次适应性KSD拟合测试程序。

We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide non-asymptotic guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. For compactly supported densities with bounded model score function, we derive the rate for KSDAgg over restricted Sobolev balls; this rate corresponds to the minimax optimal rate over unrestricted Sobolev balls, up to an iterated logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art quadratic-time adaptive KSD-based goodness-of-fit testing procedures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源