论文标题
分层贝叶斯大气检索模型,用于外部大气的人群研究:关于可居住区的案例研究
Hierarchical Bayesian Atmospheric Retrieval Modeling for Population Studies of Exoplanet Atmospheres: A Case Study on the Habitable Zone
论文作者
论文摘要
随着越来越多的光谱观测和能够具有大气表征的观测平台,对分析技术的需求越来越大,可以将有关大量系外行星的信息提炼成在统计样本中表达的大气趋势的一致图片。在这项工作中,我们开发了分层贝叶斯大气检索(HBAR)模型,以推断外部大气特征的种群水平趋势。我们证明了HBAR在推断出大气二氧化碳趋势的情况下与入射恒星通量的趋势,这是通过存在正常的碳酸盐 - 硅酸盐风化的负面反馈周期来预测的,这是对可居住区(Hz)休息的所有计算的假设。使用模拟的传输光谱和JWST质量观测,其具有H2O,CO2和N2轴承气氛的岩石行星,我们发现,二氧化碳的预测趋势会导致1-5 UM范围内订单10 ppm的光谱的细微差异,从而强调了检验这一假设固有的挑战。在高度精确的数据(每个行星100个堆叠的转运)的限制中,我们表明我们的HBAR模型能够推断出表征CO2趋势的人群级参数,并且我们证明了零假设和其他更简单的趋势可以在高度置信下拒绝。尽管我们发现对HZ的这种特定经验测试可能在JWST时代具有极大的挑战,但这项工作中开发的HBAR框架可能会发现更直接地使用了与JWST,Ariel和其他即将完成的任务观察到的气体巨型光谱。
With the growing number of spectroscopic observations and observational platforms capable of exoplanet atmospheric characterization, there is a growing need for analysis techniques that can distill information about a large population of exoplanets into a coherent picture of atmospheric trends expressed within the statistical sample. In this work, we develop a Hierarchical Bayesian Atmospheric Retrieval (HBAR) model to infer population-level trends in exoplanet atmospheric characteristics. We demonstrate HBAR on the case of inferring a trend in atmospheric CO2 with incident stellar flux, predicted by the presence of a functioning carbonate-silicate weathering negative feedback cycle, an assumption upon which all calculations of the habitable zone (HZ) rest. Using simulated transmission spectra and JWST-quality observations of rocky planets with H2O, CO2, and N2 bearing atmospheres, we find that the predicted trend in CO2 causes subtle differences in the spectra of order 10 ppm in the 1-5 um range, underscoring the challenge inherent to testing this hypothesis. In the limit of highly precise data (100 stacked transits per planet), we show that our HBAR model is capable of inferring the population-level parameters that characterize the trend in CO2, and we demonstrate that the null hypothesis and other simpler trends can be rejected at high confidence. Although we find that this specific empirical test of the HZ may be prohibitively challenging in the JWST era, the HBAR framework developed in this work may find a more immediate usage for the analysis of gas giant spectra observed with JWST, Ariel, and other upcoming missions.