论文标题

LHC喷气机中有什么异常?

What's Anomalous in LHC Jets?

论文作者

Buss, Thorsten, Dillon, Barry M., Finke, Thorben, Krämer, Michael, Morandini, Alessandro, Mück, Alexander, Oleksiyuk, Ivan, Plehn, Tilman

论文摘要

搜索异常是LHC的重要动机,并有助于定义关键分析步骤,包括触发器。我们讨论了如何通过概率密度估计来定义LHC异常,在物理空间或适当的神经网络潜在空间中进行评估,并讨论选择适当的数据参数化的模型依赖性。我们为经典K-均值聚类,DIRICHLET变异自动编码器和可逆神经网络进行了说明。对于来自黑暗部门的喷气机的两个特别具有挑战性的情况,我们评估了每种方法的优势和局限性。

Searches for anomalies are a significant motivation for the LHC and help define key analysis steps, including triggers. We discuss specific examples how LHC anomalies can be defined through probability density estimates, evaluated in a physics space or in an appropriate neural network latent space, and discuss the model-dependence in choosing an appropriate data parameterisation. We illustrate this for classical k-means clustering, a Dirichlet variational autoencoder, and invertible neural networks. For two especially challenging scenarios of jets from a dark sector we evaluate the strengths and limitations of each method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源