论文标题

退化Alt-Caffarelli功能的牙尖不存在

Non-existence of cusps for degenerate Alt-Caffarelli functionals

论文作者

McCurdy, Sean, Naples, Lisa

论文摘要

我们消除了Alt-caffarelli功能$ j_ {q}(v,ω)的\ textit {demenerate} \ textit {demenerate}的cusps的存在:= \int_Ω| \ nabla v |^2 + q^2 + q^2 + q^2 + q^2(x)x(x)χ_ { \ text {dist}(x,γ)^γ$ for $γ$ a aptine $ k $ - 平面和$ 0 <γ$。这个问题的启发是由Arama和Leoni对Stokes Wave的变异表述的概括。消除尖尖意味着[McCurdy20]的结果实际上描述了整个自由界面,因为它与$γ$相交。

We eliminate the existence of cusps in a class of \textit{degenerate} free-boundary problems for the Alt-Caffarelli functional $J_{Q}(v, Ω):= \int_Ω|\nabla v|^2 + Q^2(x)χ_{\{v>0\}}dx,$ so-called because $Q(x) = \text{dist}(x, Γ)^γ$ for $Γ$ an affine $k$-plane and $0< γ$. This problem is inspired by a generalization of the variational formulation of the Stokes Wave by Arama and Leoni. The elimination of cusps implies that the results of [Mccurdy20] in fact describe the entire free-boundary as it intersects $Γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源