论文标题
专业网球中服务回报影响模式的统计模型
A Statistical Model of Serve Return Impact Patterns in Professional Tennis
论文作者
论文摘要
在体育中使用跟踪系统的传播使得精细的时空分析成为新兴运动分析行业的主要重点。最近宣传男士专业网球的跟踪数据允许对回报影响进行首次详细的空间分析。混合模型是一种具有吸引力的基于模型的运动框架,用于运动中的空间分析,其中潜在的可变发现通常引起了主要兴趣。尽管有限混合模型具有可解释性和可伸缩性的优势,但大多数实现都采用标准参数分布,以根据潜在变量为条件。在本文中,我们提出了一种更灵活的替代方案,该替代方案使潜在的条件分布成为有限高斯混合物的混合成员。我们的模型是为了描述专业网球运动员的返回影响位置的常见风格的动力,这是我们将方法命名为“潜在样式分配”模型的原因。在完全贝叶斯的实施中,我们将该模型应用于2018年至2020年之间的141名顶级球员所扮演的142个顶级球员,并表明潜在样式分配改善了有限的高斯混合模型的预测性能,并确定了六种独特的影响样式的第一和第二输入回报。
The spread in the use of tracking systems in sport has made fine-grained spatiotemporal analysis a primary focus of an emerging sports analytics industry. Recently publicized tracking data for men's professional tennis allows for the first detailed spatial analysis of return impact. Mixture models are an appealing model-based framework for spatial analysis in sport, where latent variable discovery is often of primary interest. Although finite mixture models have the advantages of interpretability and scalability, most implementations assume standard parametric distributions for outcomes conditioned on latent variables. In this paper, we present a more flexible alternative that allows the latent conditional distribution to be a mixed member of finite Gaussian mixtures. Our model was motivated by our efforts to describe common styles of return impact location of professional tennis players and is the reason we name the approach a 'latent style allocation' model. In a fully Bayesian implementation, we apply the model to 142,803 return points played by 141 top players at Association of Tennis Professional events between 2018 and 2020 and show that the latent style allocation improves predictive performance over a finite Gaussian mixture model and identifies six unique impact styles on the first and second serve return.