论文标题

使用CGAN-aigmented ECG信号的心律失常分类

Arrhythmia Classification using CGAN-augmented ECG Signals

论文作者

Adib, Edmond, Afghah, Fatemeh, Prevost, John J.

论文摘要

ECG数据库通常由于正常的心电图和异常病例的稀缺性而高度不平衡。因此,经过不平衡数据集培训的深度学习分类器通常表现不佳,尤其是在次要课程上。一种解决方案是使用生成对抗网络(GAN)生成逼真的合成ECG信号,以增强数据集的不平衡数据集。在这项研究中,我们首次将条件GAN与WGAN-GP结合在一起,并以1D形式开发了AC-WGAN-GP,以应用于MIT-BIH心律失常数据集。我们研究了数据增强对心律不齐分类的影响。我们采用了两个模型进行心电图生成:(i)无条件的gan; Wasserstein Gan以渐变罚款(WGAN-GP)分别对每个班级进行了训练; (ii)有条件的gan;一个辅助分类器WGAN-GP(AC-WGAN-GP)模型均在所有类别上训练,然后用于在所有类别中生成合成节拍。每种情况下定义了两种情况:(a)未经检查;使用了所有生成的合成节拍,并且(b)筛选;仅根据其动态时间翘曲(DTW)到指定模板,仅选择和使用了一部分生成的节拍。对每个增强数据集和性能指标(精确/召回/F1得分微功能和宏观平均,混淆矩阵,多层级别的Precision-Recall Recall Curves)将最先进的重新网络分类器(ECGRESNET34)与未确定的Immagmented Imbalence Impalencation Cane进行了培训。我们还使用了简单的度量净改进。这三个指标始终显示出净改进(总和次级和次级),无条件的GAN具有原始生成的数据(未筛选)可以创造最佳的改进。

ECG databases are usually highly imbalanced due to the abundance of Normal ECG and scarcity of abnormal cases. As such, deep learning classifiers trained on imbalanced datasets usually perform poorly, especially on minor classes. One solution is to generate realistic synthetic ECG signals using Generative Adversarial Networks (GAN) to augment imbalanced datasets. In this study, we combined conditional GAN with WGAN-GP and developed AC-WGAN-GP in 1D form for the first time to be applied on MIT-BIH Arrhythmia dataset. We investigated the impact of data augmentation on arrhythmia classification. We employed two models for ECG generation: (i) unconditional GAN; Wasserstein GAN with gradient penalty (WGAN-GP) is trained on each class individually; (ii) conditional GAN; one Auxiliary Classifier WGAN-GP (AC-WGAN-GP) model is trained on all classes and then used to generate synthetic beats in all classes. Two scenarios are defined for each case: (a) unscreened; all the generated synthetic beats were used, and (b) screened; only a portion of generated beats are selected and used, based on their Dynamic Time Warping (DTW) distance to a designated template. A state-of-the-art ResNet classifier (EcgResNet34) is trained on each of the augmented datasets and the performance metrics (precision/recall/F1-Score micro- and macro-averaged, confusion matrices, multiclass precision-recall curves) were compared with those of the unaugmented imbalanced case. We also used a simple metric Net Improvement. All the three metrics show consistently that net improvement (total and minor-class), unconditional GAN with raw generated data (not screened) creates the best improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源