论文标题

使用荧光相关光谱法对癌症患者衍生的细胞外囊泡进行机器智能驱动的分类:试点研究的结果

Machine Intelligence-Driven Classification of Cancer Patients-Derived Extracellular Vesicles using Fluorescence Correlation Spectroscopy: Results from a Pilot Study

论文作者

Uthamacumaran, Abicumaran, Abdouh, Mohamed, Sengupta, Kinshuk, Gao, Zu-hua, Forte, Stefano, Tsering, Thupten, Burnier, Julia V, Arena, Goffredo

论文摘要

包含复杂生物货物的患者衍生的细胞外囊泡(EV)是有助于早期检测,癌症筛查和精密纳米疗法的液体活检诊断的宝贵来源。在这项研究中,我们预测将癌症患者血液来源的电动汽车耦合到时间分辨的光谱和人工智能(AI)可以提供强大的癌症筛查和随访工具。方法:对24个血液样本衍生的EV进行了荧光相关光谱(FCS)测量。从15例癌症患者(呈现5种不同类型的癌症)和9种健康对照(包括良性病变患者)中获得血液样本。使用快速四型转换算法将获得的FCS自相关光谱处理为功率光谱,并经过各种机器学习算法,以将癌症谱与健康对照光谱区分开。结果和应用:对n = 118功率谱中选定的频率测试了Adaboost随机森林(RF)分类器,支持向量机和多层感知器的性能。 RF分类器在区分癌症患者的FCS功率光谱和健康对照者的FCS功率光谱方面表现出90%的分类准确性和高灵敏度和特异性。此外,将图像卷积神经网络(CNN),RESNET网络和量子CNN作为其他验证工具评估。所有基于图像的CNN均表现出几乎相等的分类性能,精度约为82%,灵敏度和特异性得分相当高。我们的试点研究表明,与时间分辨FCS功率谱耦合的AI Algorithm可以准确并差异地对来自不同组织亚型的不同癌症样本的复杂患者衍生的EV进行分类。

Patient-derived extracellular vesicles (EVs) that contains a complex biological cargo is a valuable source of liquid biopsy diagnostics to aid in early detection, cancer screening, and precision nanotherapeutics. In this study, we predicted that coupling cancer patient blood-derived EVs to time-resolved spectroscopy and artificial intelligence (AI) could provide a robust cancer screening and follow-up tools. Methods: Fluorescence correlation spectroscopy (FCS) measurements were performed on 24 blood samples-derived EVs. Blood samples were obtained from 15 cancer patients (presenting 5 different types of cancers), and 9 healthy controls (including patients with benign lesions). The obtained FCS autocorrelation spectra were processed into power spectra using the Fast-Fourier Transform algorithm and subjected to various machine learning algorithms to distinguish cancer spectra from healthy control spectra. Results and Applications: The performance of AdaBoost Random Forest (RF) classifier, support vector machine, and multilayer perceptron, were tested on selected frequencies in the N=118 power spectra. The RF classifier exhibited a 90% classification accuracy and high sensitivity and specificity in distinguishing the FCS power spectra of cancer patients from those of healthy controls. Further, an image convolutional neural network (CNN), ResNet network, and a quantum CNN were assessed on the power spectral images as additional validation tools. All image-based CNNs exhibited a nearly equal classification performance with an accuracy of roughly 82% and reasonably high sensitivity and specificity scores. Our pilot study demonstrates that AI-algorithms coupled to time-resolved FCS power spectra can accurately and differentially classify the complex patient-derived EVs from different cancer samples of distinct tissue subtypes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源