论文标题

对赖特功能的有效计算及其在分数扩散波方程中的应用

Efficient computation of the Wright function and its applications to fractional diffusion-wave equations

论文作者

Aceto, Lidia, Durastante, Fabio

论文摘要

在本文中,我们在感兴趣的情况下处理赖特函数的有效计算,以表达某些分数微分方程的解决方案。所提出的算法基于Wright函数的特定表达的拉普拉斯变换的反转,我们为此详细讨论了误差分析。我们还提出了一个代码软件包,该代码软件包以不同的编程语言实现了此处提出的算法。分析和实现伴随着一组广泛的数值实验,这些实验既验证了误差的理论估计值,又可以验证所提出的方法代表分数微分方程的解决方案的适用性。

In this article, we deal with the efficient computation of the Wright function in the cases of interest for the expression of solutions of some fractional differential equations. The proposed algorithm is based on the inversion of the Laplace transform of a particular expression of the Wright function for which we discuss in detail the error analysis. We also present a code package that implements the algorithm proposed here in different programming languages. The analysis and implementation are accompanied by an extensive set of numerical experiments that validate both the theoretical estimates of the error and the applicability of the proposed method for representing the solutions of fractional differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源