论文标题
出色的代数和类型IIA超弦
Exceptional algebroids and type IIA superstrings
论文作者
论文摘要
我们在IIA型字符串理论的扭曲压缩至$ n $ dimensions的扭曲压缩的背景下研究出色的代数,并使用$ n \ le 6 $。与M理论和类型IIB案例相反,相关的代数不再是准确的,并且他们的Locali Moduli空间不再是微不足道的,而是$ 5 $不同的点。这与IIA理论的两个可能的标量变形有关。本地分类的证明表明,除了这些标量变形外,还可以使用一对$ 1 $ - forms,$ 2 $ - form,$ 3 $ - form和$ 4 $ form扭曲括号。此外,我们使用该分析将可行的可行空间(对应于最大超对称一致的截断)的分类转化为可拖动的代数问题。我们将讨论托里(Tori)和球体(Spheres)$ 2 $,$ 3 $和$ 4 $的尺寸的典范和示例进行了讨论。
We study exceptional algebroids in the context of warped compactifications of type IIA string theory down to $n$ dimensions, with $n\le 6$. In contrast to the M-theory and type IIB case, the relevant algebroids are no longer exact, and their locali moduli space is no longer trivial, but has $5$ distinct points. This relates to two possible scalar deformations of the IIA theory. The proof of the local classification shows that, in addition to these scalar deformations, one can twist the bracket using a pair of $1$-forms, a $2$-form, a $3$-form, and a $4$-form. Furthermore, we use the analysis to translate the classification of Leibniz parallelisable spaces (corresponding to maximally supersymmetric consistent truncations) into a tractable algebraic problem. We finish with a discussion of the Poisson-Lie U-duality and examples given by tori and spheres in $2$, $3$, and $4$ dimensions.