论文标题

双稳定点波吸收器在谐波激发下的反应行为

Response Behavior of Bi-stable Point Wave Energy Absorbers under Harmonic Wave Excitations

论文作者

Khasawneh, Mohammad A., Daqaq, Mohammed F.

论文摘要

为了扩大线性点波能量吸收器(PWA)的狭窄响应带宽,最近提出了一些研究,该研究纳入了吸收剂设计中的双稳定恢复力。这些研究依赖于数值模拟来证明双稳定吸收剂的带宽改善。在这项工作中,我们旨在了解双稳定恢复力的形状如何影响吸收器的有效带宽。为此,我们使用扰动方法获得了谐波波激发下吸收剂复杂运动的非线性微分方程的近似分析解。通过直接积分运动方程获得的数值解决方案对近似解决方案进行了验证。使用局部稳定性分析,该方程的幅度和响应的幅度缓慢调制的方程式,不同分叉点的基因座被确定为波频率和振幅的函数。然后使用这些分叉点来定义吸收剂的有效带宽。还可以用于预测波幅度和频率的任何给定组合的响应行为(小振幅周期性,大幅度周期性或高度)的响应行为(小振幅周期性,大幅度周期性或高度)的类型(小幅度周期性,较大,幅度较大,幅度较大,幅度较大,幅度较小,幅度较小),还表征了恢复力对有效带宽的影响。这样的地图对于为已知波条件设计有效的双稳定PWA至关重要。

To expand the narrow response bandwidth of linear point wave energy absorbers (PWAs), a few research studies have recently proposed incorporating a bi-stable restoring force in the design of the absorber. Such studies have relied on numerical simulations to demonstrate the improved bandwidth of the bi-stable absorbers. In this work, we aim to understand how the shape of the bi-stable restoring force influences the effective bandwidth of the absorber. To this end, we use perturbation methods to obtain an approximate analytical solution of the nonlinear differential equations governing the complex motion of the absorber under harmonic wave excitations. The approximate solution is validated against a numerical solution obtained via direct integration of the equations of motion. Using a local stability analysis of the equations governing the slow modulation of the amplitude and phase of the response, the loci of the different bifurcation points are determined as function of the wave frequency and amplitude. Those bifurcation points are then used to define an effective bandwidth of the absorber. The influence of the shape of the restoring force on the effective bandwidth is also characterized by generating design maps that can be used to predict the kind of response behavior (small amplitude periodic, large amplitude periodic, or aperiodic) for any given combination of wave amplitude and frequency. Such maps are critical towards designing efficient bi-stable PWAs for known wave conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源