论文标题

在复杂流体的杂化连续体模型上

On a hybrid continuum-kinetic model for complex fluids

论文作者

Chertock, A., Degond, P., Dimarco, G., Lukáčova-Medvid'ová, M., Ruhi, A.

论文摘要

在目前的工作中,我们首先引入了一个通用框架,用于建模复杂的多尺度流体,然后重点介绍新的混合连续性模型的推导和分析。特别是,我们将质量和动量的守恒和动量结合在一起,用于质宏观模型,并与微观行为的动力学表示。引入了少量感兴趣之后,我们通过Irving-Kirkwood公式来计算复杂的应力张量。后者需要在平衡状态周围的动力学分布扩展,并在快速的时间内连续的均质化,而空间尺度动力学则很小。对于新的混合连续型模型,线性稳定性分析的结果表明,相关的低速制度和高速模式的不稳定性的有条件稳定性。广泛的数值实验证实,所提出的多尺度模型可以反映标准牛顿流体中不存在的复杂流体的新现象。因此,所提出的一般技术可以成功地用于得出结合给定物理问题的宏观和微型结构的新有趣的系统。

In the present work, we first introduce a general framework for modelling complex multiscale fluids and then focus on the derivation and analysis of a new hybrid continuum-kinetic model. In particular, we combine conservation of mass and momentum for an isentropic macroscopic model with a kinetic representation of the microscopic behaviour. After introducing a small scale of interest, we compute the complex stress tensor by means of Irving-Kirkwood formula. The latter requires an expansion of kinetic distribution around an equilibrium state and a successive homogenization over the fast in time and small in space scale dynamics. For a new hybrid continuum-kinetic model the results of linear stability analysis indicates a conditional stability in the relevant low-speed regimes and instability for high speed regimes for higher modes. Extensive numerical experiments confirm that the proposed multiscale model can reflect new phenomena of complex fluids not being present in standard Newtonian fluids. Consequently, the proposed general technique can be successfully used to derive new interesting systems combining the macro and micro structure of a given physical problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源