论文标题

学习物理一致的粒子相互作用

Learning Physics-Consistent Particle Interactions

论文作者

Han, Zhichao, Kammer, David S., Fink, Olga

论文摘要

相互作用的粒子系统在科学和工程中起关键作用。访问管理粒子相互作用定律是对此类系统的完整理解至关重要的。但是,固有的系统复杂性使粒子相互作用在许多情况下隐藏了。机器学习方法有可能通过将实验与数据分析方法相结合来学习相互作用的粒子系统的行为。但是,大多数现有的算法都集中在学习粒子水平的动力学上。学习成对相互作用,例如成对力或成对势能,仍然是一个开放的挑战。在这里,我们提出了一种适应图网络框架的算法,该算法包含一个边缘部分,以学习成对相互作用和节点部分,以在粒子级别模拟动力学。与在这两个部分中使用神经网络的现有方法不同,我们在节点部分中设计了确定性操作员,该方法允许精确地推断出与基本物理定律一致的成对相互作用,仅通过训​​练以预测粒子加速度。我们在多个数据集上测试了所提出的方法,并证明它在正确推断成对相互作用的同时也与所有数据集上的基础物理学一致,在正确推断成对相互作用方面取得了出色的性能。所提出的框架可扩展到较大的系统,并可以转移到任何类型的粒子相互作用,这与先前提出的纯粹数据驱动的解决方案相反。开发的方法可以支持对潜在粒子相互作用定律的更好理解和发现,从而指导具有目标特性的材料的设计。

Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part that allows to precisely infer the pairwise interactions that are consistent with underlying physical laws by only being trained to predict the particle acceleration. We test the proposed methodology on multiple datasets and demonstrate that it achieves superior performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets. The proposed framework is scalable to larger systems and transferable to any type of particle interactions, contrary to the previously proposed purely data-driven solutions. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence guide the design of materials with targeted properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源