论文标题
等级为$π_1(\ mathrm {symp} _0)$
On the rank of $π_1(\mathrm{Symp}_0)$
论文作者
论文摘要
我们表明,对于任何积极的整数$ k $,都存在一个封闭的符号$ 4 $ -Manifold $(m,ω)$,因此$ h^1_ \ m atrm {dr}(m; \ m; \ mathbb {r})$是$ k $ - dimiperimential dimensional vector Space及其Flux Group及其磁盘群$ h^1_ \ MATHRM {DR}(M_1; \ MATHBB {Z})$。
We show that for any positive integer $k$ there exists a closed symplectic $4$-manifold $(M,ω)$, such that $H^1_\mathrm{dR}(M;\mathbb{R})$ is a $k$-dimensional real vector space and its Flux group is equal to $H^1_\mathrm{dR}(M_1;\mathbb{Z})$.