论文标题

使用面部地标和神经网络实时面部表达识别

Real-Time Facial Expression Recognition using Facial Landmarks and Neural Networks

论文作者

Haghpanah, Mohammad Amin, Saeedizade, Ehsan, Masouleh, Mehdi Tale, Kalhor, Ahmad

论文摘要

本文提出了一种用于特征提取,七种不同情绪的分类以及基于人脸静态图像的实时识别的轻量级算法。在这方面,基于上述算法对多层感知器(MLP)神经网络进行了训练。为了对人的面孔进行分类,首先,将一些预处理应用于输入图像,该图像可以将面部定位并切除。在下一步中,使用一个面部标志性检测库,可以检测每个脸部的地标。然后,人脸被分成上和下面,这可以从每个部分中提取所需的特征。在提出的模型中,考虑了几何和基于纹理的特征类型。在特征提取阶段之后,创建了一个归一化的特征向量。使用这些功能向量训练了3层MLP,在测试组中可获得96%的精度。

This paper presents a lightweight algorithm for feature extraction, classification of seven different emotions, and facial expression recognition in a real-time manner based on static images of the human face. In this regard, a Multi-Layer Perceptron (MLP) neural network is trained based on the foregoing algorithm. In order to classify human faces, first, some pre-processing is applied to the input image, which can localize and cut out faces from it. In the next step, a facial landmark detection library is used, which can detect the landmarks of each face. Then, the human face is split into upper and lower faces, which enables the extraction of the desired features from each part. In the proposed model, both geometric and texture-based feature types are taken into account. After the feature extraction phase, a normalized vector of features is created. A 3-layer MLP is trained using these feature vectors, leading to 96% accuracy on the test set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源