论文标题

基于新闻共享网络的帐户可信度推论

Account credibility inference based on news-sharing networks

论文作者

Truong, Bao Tran, Allen, Oliver Melbourne, Menczer, Filippo

论文摘要

错误信息的传播对社交媒体生态系统构成威胁。减轻这种威胁的有效对策要求社交媒体平台即使在共享内容可以归类为错误信息之前,也能够准确地检测到低可信度的帐户。在这里,我们提出了从信息扩散模式中推断出帐户可信度的方法,特别是利用两个网络:Reshare网络,捕获帐户对其他帐户的信任以及双分部分帐户源网络,从而捕获帐户对媒体来源的信任。我们扩展了网络中心度度量和图形嵌入技术,从系统地比较了来自不同环境和社交媒体平台的数据上的这些算法。我们证明,两种信任网络都提供了有用的信号来估计帐户信誉。一些提出的方法产生了很高的准确性,提供了有希望的解决方案,以促进在线社区中可靠信息的传播。从我们的结果中出现了两种同质的同性恋:如果它们重新介绍彼此的内容或共享类似来源的内容,那么帐户往往具有相似的信誉。我们的方法邀请对帐户和新闻来源之间的关系进行进一步调查,以更好地表征散布器的错误信息。

The spread of misinformation poses a threat to the social media ecosystem. Effective countermeasures to mitigate this threat require that social media platforms be able to accurately detect low-credibility accounts even before the content they share can be classified as misinformation. Here we present methods to infer account credibility from information diffusion patterns, in particular leveraging two networks: the reshare network, capturing an account's trust in other accounts, and the bipartite account-source network, capturing an account's trust in media sources. We extend network centrality measures and graph embedding techniques, systematically comparing these algorithms on data from diverse contexts and social media platforms. We demonstrate that both kinds of trust networks provide useful signals for estimating account credibility. Some of the proposed methods yield high accuracy, providing promising solutions to promote the dissemination of reliable information in online communities. Two kinds of homophily emerge from our results: accounts tend to have similar credibility if they reshare each other's content or share content from similar sources. Our methodology invites further investigation into the relationship between accounts and news sources to better characterize misinformation spreaders.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源