论文标题

FNIRS中的深度学习:评论

Deep Learning in fNIRS: A review

论文作者

Eastmond, Condell, Subedi, Aseem, De, Suvranu, Intes, Xavier

论文摘要

意义:光学神经影像学已成为一种完善的临床和研究工具,可监测人脑中的皮质激活。值得注意的是,功能近红外光谱(FNIRS)的结果很大程度上取决于所采用的数据处理管道和分类模型。最近,深度学习(DL)方法已经证明了许多生物医学领域的数据处理和分类任务中的快速,准确的性能。目的:我们旨在回顾FNIRS研究中新兴的DL应用。方法:我们首先介绍一些常用的DL技术。然后,审查总结了该领域一些最活跃的领域中当前的DL工作,包括脑部计算机界面,神经冲动诊断和神经科学发现。结果:在本综述中考虑的63篇论文中,32报告了对传统机器学习技术的深度学习技术的比较研究,其中已显示26个在分类准确性方面表现出了优于后者的表现。此外,8项研究还利用深度学习来减少通常使用FNIRS数据进行的预处理量或通过数据增强增加数据量。结论:DL技术在FNIRS研究中的应用显示,可以减轻FNIRS研究中存在的许多障碍,例如冗长的数据预处理或小样本量,同时达到可比较或改进的分类精度。

Significance: Optical neuroimaging has become a well-established clinical and research tool to monitor cortical activations in the human brain. It is notable that outcomes of functional Near-InfraRed Spectroscopy (fNIRS) studies depend heavily on the data processing pipeline and classification model employed. Recently, Deep Learning (DL) methodologies have demonstrated fast and accurate performances in data processing and classification tasks across many biomedical fields. Aim: We aim to review the emerging DL applications in fNIRS studies. Approach: We first introduce some of the commonly used DL techniques. Then the review summarizes current DL work in some of the most active areas of this field, including brain-computer interface, neuro-impairment diagnosis, and neuroscience discovery. Results: Of the 63 papers considered in this review, 32 report a comparative study of deep learning techniques to traditional machine learning techniques where 26 have been shown outperforming the latter in terms of classification accuracy. Additionally, 8 studies also utilize deep learning to reduce the amount of preprocessing typically done with fNIRS data or increase the amount of data via data augmentation. Conclusions: The application of DL techniques to fNIRS studies has shown to mitigate many of the hurdles present in fNIRS studies such as lengthy data preprocessing or small sample sizes while achieving comparable or improved classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源