论文标题

学会自然而然

Learning to Hash Naturally Sorts

论文作者

Yu, Jiaguo, Shen, Yuming, Wang, Menghan, Zhang, Haofeng, Torr, Philip H. S.

论文摘要

学习哈希图片列表分类问题。它的测试指标,例如平均水平的精度,依靠按配对代码相似性排序的分类候选列表。但是,由于分类操作的非差异性质,几乎没有人会以端对端进行分类的结果训练深层的模型。由于训练损失通常无法反映实际的检索度量,因此在培训和测试目标中的这种不一致可能导致次优表现。在本文中,我们通过引入自然排序的哈希(NSH)来解决这个问题。我们对样品的哈希守则的锤子距离进行排序,并因此收集其潜在的表示,以进行自我监督培训。由于最新的可区分排序近似值的进步,哈希头从分层器中接收梯度,因此可以与培训程序一起优化哈希编码器。此外,我们描述了一种新颖的分类噪声对焦估计(分类)损失,该损失有选择地选择正面和负面样本进行对比学习,这使NSH可以在培训期间以无监督的方式挖掘数据语义关系。我们的广泛实验表明,所提出的NSH模型大大优于三个基准数据集上现有的无监督哈希方法。

Learning to hash pictures a list-wise sorting problem. Its testing metrics, e.g., mean-average precision, count on a sorted candidate list ordered by pair-wise code similarity. However, scarcely does one train a deep hashing model with the sorted results end-to-end because of the non-differentiable nature of the sorting operation. This inconsistency in the objectives of training and test may lead to sub-optimal performance since the training loss often fails to reflect the actual retrieval metric. In this paper, we tackle this problem by introducing Naturally-Sorted Hashing (NSH). We sort the Hamming distances of samples' hash codes and accordingly gather their latent representations for self-supervised training. Thanks to the recent advances in differentiable sorting approximations, the hash head receives gradients from the sorter so that the hash encoder can be optimized along with the training procedure. Additionally, we describe a novel Sorted Noise-Contrastive Estimation (SortedNCE) loss that selectively picks positive and negative samples for contrastive learning, which allows NSH to mine data semantic relations during training in an unsupervised manner. Our extensive experiments show the proposed NSH model significantly outperforms the existing unsupervised hashing methods on three benchmarked datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源