论文标题

近端Denoiser,用于通过非convex正则化的收敛插件优化

Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization

论文作者

Hurault, Samuel, Leclaire, Arthur, Papadakis, Nicolas

论文摘要

通过迭代近端算法通过替换近端运算符来替换近端操作员,通过迭代近端算法解决了插件(PNP)方法。当使用深层神经网络DeNoiser应用时,这些方法显示出用于图像恢复问题的最先进的视觉性能。但是,他们的理论收敛分析仍然不完整。大多数现有的融合结果都考虑非现实主义的非专用Denoisers,或者将其分析限制为在反问题中强烈凸出数据效率项。最近,提议将DeNoiser作为梯度下降步骤训练,以通过深神经网络参数为参数。使用这样的DeNoiser保证了半季度分解(PNP-HQS)迭代算法的PNP版本的收敛性。在本文中,我们表明该梯度DeNoiser实际上可以对应于另一个标量函数的近端操作员。鉴于这一新结果,我们利用了非convex设置中近端算法的收敛理论,以获得PNP-PGD(近端梯度下降)和PNP-ADMM(乘数的交替方向方法)的收敛结果。当建立在光滑的梯度Denoiser顶部时,我们表明PNP-PGD和PNP-ADMM是显式功能的收敛性和目标固定点。这些收敛结果通过数值实验进行了脱毛,超分辨率和内化。

Plug-and-Play (PnP) methods solve ill-posed inverse problems through iterative proximal algorithms by replacing a proximal operator by a denoising operation. When applied with deep neural network denoisers, these methods have shown state-of-the-art visual performance for image restoration problems. However, their theoretical convergence analysis is still incomplete. Most of the existing convergence results consider nonexpansive denoisers, which is non-realistic, or limit their analysis to strongly convex data-fidelity terms in the inverse problem to solve. Recently, it was proposed to train the denoiser as a gradient descent step on a functional parameterized by a deep neural network. Using such a denoiser guarantees the convergence of the PnP version of the Half-Quadratic-Splitting (PnP-HQS) iterative algorithm. In this paper, we show that this gradient denoiser can actually correspond to the proximal operator of another scalar function. Given this new result, we exploit the convergence theory of proximal algorithms in the nonconvex setting to obtain convergence results for PnP-PGD (Proximal Gradient Descent) and PnP-ADMM (Alternating Direction Method of Multipliers). When built on top of a smooth gradient denoiser, we show that PnP-PGD and PnP-ADMM are convergent and target stationary points of an explicit functional. These convergence results are confirmed with numerical experiments on deblurring, super-resolution and inpainting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源