论文标题

非线性阻力的分子气中的热和熵mpemba效应

Thermal versus entropic Mpemba effect in molecular gases with nonlinear drag

论文作者

Megías, Alberto, Santos, Andrés, Prados, Antonio

论文摘要

宽松地说,当更热的系统更快地冷却或更抽象的方式时,当系统远离平衡放松速度时,MPEMBA效果就会出现。在本文中,我们通过分析(通过采用动力学理论的工具)和数值(直接模拟动力学方程的蒙特卡洛和事件驱动的分子动力学)研究了具有非线性阻力的分子气体中的MPEMBA效应。分析是通过文献最近在文献中考虑的两种替代途径进行的:第一或热途径,其中MPEMBA效应的特征是动力学温度(平均动能)的进化曲线的穿越(其次,其次,随机热力学或诱器途径,MPEMBA效果是由距离效果进行了距离,从而取得了距离的距离。通常,发现热和熵MPEMBA效应之间的非术对应关系,即,可能存在热效应而没有其熵对应物,反之亦然。此外,就热弛豫平衡而言,非平凡的过时使得有必要修改热MPEMBA效应的通常定义,这被证明是根据局部平衡分布的放松来更好地描述的。我们的理论框架涉及扩展的正氨酸近似,其中不仅保留了过量的峰度,而且还保留了第六次累积剂。

Loosely speaking, the Mpemba effect appears when hotter systems cool sooner or, in a more abstract way, when systems further from equilibrium relax faster. In this paper, we investigate the Mpemba effect in a molecular gas with nonlinear drag, both analytically (by employing the tools of kinetic theory) and numerically (direct simulation Monte Carlo of the kinetic equation and event-driven molecular dynamics). The analysis is carried out via two alternative routes, recently considered in the literature: first, the kinetic or thermal route, in which the Mpemba effect is characterized by the crossing of the evolution curves of the kinetic temperature (average kinetic energy), and, second, the stochastic thermodynamics or entropic route, in which the Mpemba effect is characterized by the crossing of the distance to equilibrium in probability space. In general, a nonmutual correspondence between the thermal and entropic Mpemba effects is found, i.e., there may appear the thermal effect without its entropic counterpart or vice versa. Furthermore, a nontrivial overshoot with respect to equilibrium of the thermal relaxation makes it necessary to revise the usual definition of the thermal Mpemba effect, which is shown to be better described in terms of the relaxation of the local equilibrium distribution. Our theoretical framework, which involves an extended Sonine approximation in which not only the excess kurtosis but also the sixth cumulant is retained, gives an excellent account of the behavior observed in simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源