论文标题

确保联邦敏感的主题分类,以防止中毒攻击

Securing Federated Sensitive Topic Classification against Poisoning Attacks

论文作者

Chu, Tianyue, Garcia-Recuero, Alvaro, Iordanou, Costas, Smaragdakis, Georgios, Laoutaris, Nikolaos

论文摘要

我们提出了一个基于联合学习(FL)的解决方案,用于构建分布式分类器,能够检测包含与健康,性偏好,政治信念等类别相关的GDPR敏感内容的URL。尽管这样的分类器解决了以前的离线/集中分类分类器的局限性,但仍可能会导致造成MENIGN的障碍症状,但仍可能会导致过度的模型,以使其无法进行过度的损害。为了防止这种情况,我们基于主观逻辑和基于残留的攻击检测而开发了强大的聚合方案。通过理论分析,痕量驱动的模拟以及对原型和真实用户的实验验证的结合,我们表明我们的分类器可以以高准确性检测敏感内容,快速学习新标签,并考虑到恶意用户的中毒攻击,以及对无害的攻击的不足。

We present a Federated Learning (FL) based solution for building a distributed classifier capable of detecting URLs containing GDPR-sensitive content related to categories such as health, sexual preference, political beliefs, etc. Although such a classifier addresses the limitations of previous offline/centralised classifiers,it is still vulnerable to poisoning attacks from malicious users that may attempt to reduce the accuracy for benign users by disseminating faulty model updates. To guard against this, we develop a robust aggregation scheme based on subjective logic and residual-based attack detection. Employing a combination of theoretical analysis, trace-driven simulation, as well as experimental validation with a prototype and real users, we show that our classifier can detect sensitive content with high accuracy, learn new labels fast, and remain robust in view of poisoning attacks from malicious users, as well as imperfect input from non-malicious ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源