论文标题

降低维度的概率图耦合视图

A Probabilistic Graph Coupling View of Dimension Reduction

论文作者

Van Assel, Hugues, Espinasse, Thibault, Chiquet, Julien, Picard, Franck

论文摘要

大多数流行的尺寸降低(DR)方法(例如T-SNE和UMAP)是基于最大程度地减少输入和潜在成对相似性之间的成本。尽管广泛使用,但这些方法缺乏明确的概率基础,无法充分了解其特性和局限性。在这个程度上,我们基于使用交叉熵的隐藏图耦合引入了一个统一的统计框架。这些图在输入和潜在空间中的观测值之间诱导了马尔可夫随机场依赖性结构。我们表明,现有的成对相似性DR方法可以从我们的框架中检索出图形的特定选择。此外,这表明这些方法遭受了统计缺陷,该统计缺陷解释了保存粗粒依赖性方面的性能不佳。我们的模型被杠杆化并扩展到解决此问题时,在使用Laplacian eigenmaps和PCA绘制新链接时。

Most popular dimension reduction (DR) methods like t-SNE and UMAP are based on minimizing a cost between input and latent pairwise similarities. Though widely used, these approaches lack clear probabilistic foundations to enable a full understanding of their properties and limitations. To that extent, we introduce a unifying statistical framework based on the coupling of hidden graphs using cross entropy. These graphs induce a Markov random field dependency structure among the observations in both input and latent spaces. We show that existing pairwise similarity DR methods can be retrieved from our framework with particular choices of priors for the graphs. Moreover this reveals that these methods suffer from a statistical deficiency that explains poor performances in conserving coarse-grain dependencies. Our model is leveraged and extended to address this issue while new links are drawn with Laplacian eigenmaps and PCA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源