论文标题

在vo $ _2 $/Nife异质结构中调整整个相过渡的旋转轨道扭矩

Tuning spin-orbit torques across the phase transition in VO$_2$/NiFe heterostructure

论文作者

Kim, Jun-young, Cramer, Joel, Lee, Kyujoon, Han, Dong-Soo, Go, Dongwook, Salev, Pavel, Papa, Pavel N., Vargas, Nicolas M., Schuller, Ivan K., Mokrousov, Yuriy, Jakob, Gerhard, Kläui, Mathias

论文摘要

自旋轨道扭矩作为一种有希望的节能磁开关的出现,引起了人们对具有易于且完全可调的自旋轨道扭矩的材料系统的浓厚兴趣。在这里,使用自旋 - 扭转的铁磁共振研究了电流引起的自旋轨道扭矩/Nife异质结构,其中Vo $ _2 $ layer经历了著名的绝缘剂 - 金属过渡。吉尔伯特阻尼参数($α$)的温度大约增加了两倍,这归因于vo $ _2 $/Nife接口接口的变化,vo $ $ _2 $ _2 $相位过渡。更值得注意的是,大型调制($ \ pm $ 100%)和跨VO $ _2 $相变的电流引起的旋转轨道扭矩的符号变化表明,两种竞争性的旋转轨道扭矩生成机构。金属vo $ _2 $中的散装旋转效果,由我们的第一原理计算旋转霍尔电导率的计算,$σ_{sh} \大约10^4 \ frac {\ hbar} {\ hbar} {e}ω^{ - 1} m^{ - 1} m^{ - 1} $,已验证为旋转阶段的旋转阶段。 Nife中的自我诱导/异常扭矩,相反的符号和与金属VO $ _2 $中的散装旋转霍尔效应相似的大小,可能是另一种随着温度降低而主导的其他竞争机制。对于应用,扭矩强度和方向的强可调性为量身定制材料的旋转轨道扭矩开辟了新的途径,这些材料经历了新设备功能的相变。

The emergence of spin-orbit torques as a promising approach to energy-efficient magnetic switching has generated large interest in material systems with easily and fully tunable spin-orbit torques. Here, current-induced spin-orbit torques in VO$_2$/NiFe heterostructures were investigated using spin-torque ferromagnetic resonance, where the VO$_2$ layer undergoes a prominent insulator-metal transition. A roughly two-fold increase in the Gilbert damping parameter, $α$, with temperature was attributed to the change in the VO$_2$/NiFe interface spin absorption across the VO$_2$ phase transition. More remarkably, a large modulation ($\pm$100%) and a sign change of the current-induced spin-orbit torque across the VO$_2$ phase transition suggest two competing spin-orbit torque generating mechanisms. The bulk spin Hall effect in metallic VO$_2$, corroborated by our first-principles calculation of spin Hall conductivity, $σ_{SH} \approx 10^4 \frac{\hbar}{e} Ω^{-1} m^{-1}$, is verified as the main source of the spin-orbit torque in the metallic phase. The self-induced/anomalous torque in NiFe, of the opposite sign and a similar magnitude to the bulk spin Hall effect in metallic VO$_2$, could be the other competing mechanism that dominates as temperature decreases. For applications, the strong tunability of the torque strength and direction opens a new route to tailor spin-orbit torques of materials which undergo phase transitions for new device functionalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源