论文标题

社交网络中异步的意见动态

Asynchronous Opinion Dynamics in Social Networks

论文作者

Berenbrink, Petra, Hoefer, Martin, Kaaser, Dominik, Lenzner, Pascal, Rau, Malin, Schmand, Daniel

论文摘要

在一个社会中传播的意见决定了选举的命运,产品的成功以及政治或社会运动的影响。 Hegselmann和Krause的模型是研究社交网络中这种意见形成过程的众所周知的理论模型。与许多其他理论模型相反,它不会融合到所有代理商就同一意见同意的情况下。相反,它假设人们在且仅当它与自己的意见接近时发现合理的意见。系统收敛于稳定的情况,在这种情况下,共享相同意见的代理形成集群,而不同群集中的代理不会\ mbox {相互影响。} 我们专注于Hegselmann-Krause模型的社会变体,其中代理通过社交网络联系,他们的观点在迭代过程中演变。当被激活时,代理人采用了具有类似意见的邻居的意见的平均值。这样,一组影响代理商的邻居可能会随着时间而变化。据我们所知,具有异步意见更新的社交Hegselmann-Krause系统仅以完整的图作为社交网络进行了研究。我们表明,这种具有随机代理激活的意见动态可以保证任何社交网络融合。我们提供$ \ Mathcal {o}(n | e |^2(\ Varepsilon/δ)^2)$的上限在预期的意见更新之前,直到收敛为止,其中$ | e | $是社交网络的边缘数。对于完整的社交网络,我们显示了$ \ Mathcal {o}(n^3(n^2 +(\ varepsilon/δ)^2))$的界限,这代表了比以前最佳的上限的$ \ Mathcal {o}(n^9(n^9(n^9(\ varepsilon/δ)^2))的重大改进。我们的边界通过模拟互补,这些模拟表明渐近匹配下限。

Opinion spreading in a society decides the fate of elections, the success of products, and the impact of political or social movements. The model by Hegselmann and Krause is a well-known theoretical model to study such opinion formation processes in social networks. In contrast to many other theoretical models, it does not converge towards a situation where all agents agree on the same opinion. Instead, it assumes that people find an opinion reasonable if and only if it is close to their own. The system converges towards a stable situation where agents sharing the same opinion form a cluster, and agents in different clusters do not \mbox{influence each other.} We focus on the social variant of the Hegselmann-Krause model where agents are connected by a social network and their opinions evolve in an iterative process. When activated, an agent adopts the average of the opinions of its neighbors having a similar opinion. By this, the set of influencing neighbors of an agent may change over time. To the best of our knowledge, social Hegselmann-Krause systems with asynchronous opinion updates have only been studied with the complete graph as social network. We show that such opinion dynamics with random agent activation are guaranteed to converge for any social network. We provide an upper bound of $\mathcal{O}(n|E|^2 (\varepsilon/δ)^2)$ on the expected number of opinion updates until convergence, where $|E|$ is the number of edges of the social network. For the complete social network we show a bound of $\mathcal{O}(n^3(n^2 + (\varepsilon/δ)^2))$ that represents a major improvement over the previously best upper bound of $\mathcal{O}(n^9 (\varepsilon/δ)^2)$. Our bounds are complemented by simulations that indicate asymptotically matching lower bounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源