论文标题

用*编码的快速相对熵编码

Fast Relative Entropy Coding with A* coding

论文作者

Flamich, Gergely, Markou, Stratis, Hernández-Lobato, José Miguel

论文摘要

相对熵编码(REC)算法使用提案分布$ p $从目标分布$ q $编码样本,以使预期的代码长为$ \ nathcal {o}(d_ {kl} [q \,|| \ \,p])$。可以将REC与现有学习的压缩模型无缝集成,因为与熵编码不同,它不假定离散的$ q $或$ p $,并且不需要定量。但是,一般的rec算法需要一个棘手的$ω(e^{d_ {kl} [q \,|| \,p]})$ runtime。我们介绍为*和AD*编码,两种基于*采样的REC算法。我们证明,对于$ \ Mathbb {r} $上的连续分布,如果密度比是单模式的,则为*具有$ \ Mathcal {o}(d _ {\ infty} [q \,|| \,|| \,p] $预期运行时间,其中$ d _ { $ \ infty $ -Divergence。我们提供了AD*也具有$ \ MATHCAL {O}(d _ {\ infty} [q \,|| \,p])$预期运行时的实验证据。我们证明,AS*和AD*实现了$ \ Mathcal {O}(d_ {kl} [q \,|| \,p])$的预期代码长度。此外,我们介绍了DAD*,这是一种基于AD*的近似算法,该算法保留了其有利的运行时,并且具有与替代方法相似的偏见。我们提出了专注于VAE的ISOKL VAE(IKVAE),可以与DAD*一起使用,以进一步提高压缩效率。我们在MNIST上使用(IK)VAE评估了一个编码,表明它可以在理论上最佳极限附近无损地压缩图像。

Relative entropy coding (REC) algorithms encode a sample from a target distribution $Q$ using a proposal distribution $P$, such that the expected codelength is $\mathcal{O}(D_{KL}[Q \,||\, P])$. REC can be seamlessly integrated with existing learned compression models since, unlike entropy coding, it does not assume discrete $Q$ or $P$, and does not require quantisation. However, general REC algorithms require an intractable $Ω(e^{D_{KL}[Q \,||\, P]})$ runtime. We introduce AS* and AD* coding, two REC algorithms based on A* sampling. We prove that, for continuous distributions over $\mathbb{R}$, if the density ratio is unimodal, AS* has $\mathcal{O}(D_{\infty}[Q \,||\, P])$ expected runtime, where $D_{\infty}[Q \,||\, P]$ is the Rényi $\infty$-divergence. We provide experimental evidence that AD* also has $\mathcal{O}(D_{\infty}[Q \,||\, P])$ expected runtime. We prove that AS* and AD* achieve an expected codelength of $\mathcal{O}(D_{KL}[Q \,||\, P])$. Further, we introduce DAD*, an approximate algorithm based on AD* which retains its favourable runtime and has bias similar to that of alternative methods. Focusing on VAEs, we propose the IsoKL VAE (IKVAE), which can be used with DAD* to further improve compression efficiency. We evaluate A* coding with (IK)VAEs on MNIST, showing that it can losslessly compress images near the theoretically optimal limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源