论文标题
最小的非戈洛德脸戒指和梅西产品
Minimally non-Golod face rings and Massey products
论文作者
论文摘要
我们给出了正确的陈述,并提供了Grbić,Panov,Theriault和Wu获得的标准的完整证明,以示为Simplicial Complex $ k $的face Ring $ \ bbbk [k] $,以在field $ \ bbbk $上获得GOLOD。 (最初的论点取决于Berglund和Jöllenbeck的一篇论文的主要结果,该论文被Katthän证明是虚假的。)我们还构建了一个微型非Golod复合物$ K $的示例,使得相应的Moment-Angle Complems $ \ Mathcal Z_K $ MATHCAL ZK $具有琐碎的Masseyy Masseyy triple Masseyy。
We give a correct statement and a complete proof of the criterion obtained by Grbić, Panov, Theriault and Wu for the face ring $\Bbbk[K]$ of a simplicial complex $K$ to be Golod over a field $\Bbbk$. (The original argument depended on the main result of a paper by Berglund and Jöllenbeck, which was shown to be false by Katthän.) We also construct an example of a minimally non-Golod complex $K$ such that the cohomology of the corresponding moment-angle complex $\mathcal Z_K$ has trivial cup product and a non-trivial triple Massey product.